|本期目录/Table of Contents|

[1]杨立娟,杨琼芬.Sharma-Tasso-Olver方程的孤立子解[J].绵阳师范学院学报,2018,(02):9-11.[doi:10.16276/j.cnki.cn51-1670/g.2018.02.002]
 YANG Lijuan,YANG Qiongfen.Soliton solutions to the Sharma-Tasso-Olverequation[J].Journal of Mianyang Normal University,2018,(02):9-11.[doi:10.16276/j.cnki.cn51-1670/g.2018.02.002]
点击复制

Sharma-Tasso-Olver方程的孤立子解(PDF)
分享到:

《绵阳师范学院学报》[ISSN:1672-612X/CN:51-1670/G]

卷:
期数:
2018年02期
页码:
9-11
栏目:
数学与统计
出版日期:
2018-02-25

文章信息/Info

Title:
Soliton solutions to the Sharma-Tasso-Olverequation
文章编号:
1672-612X(2018)02-0009-03
作者:
杨立娟杨琼芬
绵阳师范学院数理学院,四川绵阳 621000
Author(s):
YANG Lijuan YANG Qiongfen
School of Mathematics and Physics, Mianyang Teachers' College, Mianyang, Sichuan 621000
关键词:
Sharma-Tasso-Olver方程 推广的Hirota双线性方法 孤立子解
Keywords:
Sharma-Tasso-Olver equation Extended Hirota's bilinear method Soliton solutions
分类号:
O175.2
DOI:
10.16276/j.cnki.cn51-1670/g.2018.02.002
文献标志码:
A
摘要:
本文利用推广的Hirota双线性方法,求得了(1+1)维Sharma-Tasso-Olver方程的孤立子解,进一步讨论了解的局域孤子结构.
Abstract:
This paper applied the Hirota's bilinear method to obtain the Soliton solutions of the(1 + 1)-dimensional Sharma-Tasso-Olver equation. And some local soliton structure is also discussed.

参考文献/References:

[1] Lou S Y.On the coherent structures of the Nizhnik-Novikov-Veselov equation[J].Phys.Lett.A,2000,277(2):94-100.
[2] Tang X Y,Liang Z F.Variable separation solutions for the(3+1)-dimensional Jimbo-Miwa equation[J].Phys.Lett.A,2006,351(6):398-402.
[3] Ying J P,Lou S Y.Multilinear Variable Separation Approach in(3+1)-Dimensions: the Burgers Equation[J].Chin.Phys.Lett.,2003,20:1448-1452.
[4] Hirota R.Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons[J]. Phys.Rev.Lett.,1971,27:1192-1194.
[5] Hirota R.Exact envelope-soliton of a nonlinear wave equation[J].Math.Phys.,1973,20(14): 805-809.
[6] Rogers C,Shadwick W R..transformations and their application[M].In:Mathematics in science and engeneering,Vol,161.New York:Academic Press,1982.
[7] Ma H C. A simple method to general Lie point symmetry groups of the(3+1)-dimensional Jimbo-Miwa equation[J].Chin.Phys.Lett.,2005,22:554-557.
[8] Sirendaoreji,Sun J.Auxiliary equation method for solving nonlinear Partial differential equation[J].Phys Lett.A,2003,309:387-396.
[9] Aysha Ghafoor,Sahar Firdous,Tamour Zubair,Amna Iftikhar,Saira Zainab,Syed Tauseef Mohyud-Din.-Expansion method for generalized ZK,Sharma-Tasso-Olver(STO)and modified ZK equations[J].QScience Connect,Volume 2013(24):1-12.
[10] 纪建成,李晓锋,韩家骅.Sharma-Tasso-Olver方程和Benjamin方程新的精确解[J].安徽大学学报(自科版),2012,36(1):57-63.
[11] Yinghui He,Shaolin Li,and Yao Long,Exact Solutions to the Sharma-Tasso-Olver Equation By Using Improved-Expansion Method[J].Journal of Applied Mathematics,2013(3):582-584.
[12] Saeid Abbasbandy,Mahnaz Ashtiani,and Esmail Babolian.Analytic Solution of the Sharma-Tasso-Olver Equationby Homotopy Analysis Method[J].Z.Naturforsch,2010,64(4):285-290.
[13] Youwei Zhang.Lie Symmetry Analysis and Exact Solutions of the Sharma-Tasso-Olver Equation[J].IAENG International Journal of Applied Mathematics,2016,46(2):150-154.
[14] 田丽娜,王志林,苏旺辉,陈莉.Sharma-Tasso-Olver方程的对称分析及精确解[J].兰州大学学报(自科版),2013(4):525-529.
[15] KOLEBAJE O T,POPOOLA O O.Exact Solution of Fractional STO and Jimbo-Miwa Equations with the Generalized Bernoulli Equation Method[J].The African Review of Physics,2014(9):195-200.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-11-28
基金项目:四川省教育厅自然科学基金资助项目(16ZB0310)
第一作者简介:杨立娟(1975- ),女,河北唐山人,副教授,研究方向:动力系统-分支与混沌.
更新日期/Last Update: 2018-02-25