|本期目录/Table of Contents|

[1]谭 勇.消防机器人视觉感知技术研究综述[J].绵阳师范学院学报,2018,(02):40-45.[doi:10.16276/j.cnki.cn51-1670/g.2018.02.008]
 TAN Yong.A Survey on Visual Perception for Firefighting Robots[J].Journal of Mianyang Normal University,2018,(02):40-45.[doi:10.16276/j.cnki.cn51-1670/g.2018.02.008]





A Survey on Visual Perception for Firefighting Robots
谭 勇
长江师范学院电子信息工程学院,重庆 408003
TAN Yong
School of Electronic Engineering, Yangtze Normal University, Chongqing 408003
消防机器人 视觉传感器 信息处理器 检测
firefighting robots visual sensors information processors detection
视觉感知是消防机器人获取、分析与理解火场环境信息的重要手段,是实现预定消防作业功能的重要基础.文章首先介绍了常用视觉传感器的特点以及基于这些传感器的消防机器人视觉系统组成结构,和实现消防机器人视觉系统控制,视觉信息处理的常用处理器以及相应的系统特性; 从火焰检测、人体检测、障碍物检测三个典型方面概述了视觉信息处理算法的发展现状.最后,总结了消防机器人视觉感知技术当前发展中存在的三方面不足,并以此阐述了其未来发展趋势.
Visual perception plays crucial roles for firefighting robot to acquire/understand environmental and works as the foundation for the robots to get firefighting capability. In this paper, a survey on the visual perception techniques developed for firefighting robots is conducted. Firstly, commonly used visual sensors and related architectures of visual systems are introduced. Then, the hardware processors working for visual system control and visual information processing are explored. Next, the perception algorithms including fire detection, human detection and obstacle detection are described. At last, the prospective technical trends are proposed after three shortages of the current visual perception techniques have been pointed out.


[1] 党海昌.消防机器人在我国灭火救援中的应用现状和前景分析[J].消防技术与产品信息,2016(3):69-71.
[2] 罗志增,蒋静坪.机器人感觉与多信息融合[M].北京:机械工业出版社,2003:74-86.
[3] Starr J W,Lattimer B Y.Evaluation of Navigation Sensors in Fire Smoke Environments[J].Fire Technology,2014,50(6):1459-1481.
[4] Khoon T N,Sebastian P,Saman A B S.Autonomous firefighting mobile platform Autonomous firefighting mobile platform[J].Procedia Engineering,2012,41:1145-1153.
[5] Hong J H,Min B C,Taylor J M,et al.NL-based communication with firefighting robot: IEEE International Conference on Systems,Man,and Cybernetics[C].Seoul,South Korea:IEEE,2012:1461-1466.
[6] Kim J H,Starr J W,Lattimer B Y.Firefighting robot stereo infrared vision and radar sensor fusion for imaging through smoke[J].Fire Technology,2015,51(4):823-845.
[7] Wagoner A,Jagadish A,Matson E T,et al.Humanoid robots rescuing humans and extinguishing fires for Cooperative Fire Security System using HARMS:International Conference on Automation,Robotics and Applications[C].Queenstown,New Zealand:IEEE,2015:411-415.
[8] Wu H B,Li Z J,Ye J H,et al.Firefighting robot with video full-closed loop control[J].Optical Engineering,2016, 6(2):254-269.
[9] Rangan M K,Rakesh S M,Sandeep G S P,et al.A computer vision based approach for detection of fire and direction control for enhanced operation of fire fighting robot[J].Control,Automation,Robotics and Embedded Systems,2013:1-6.
[10] Velasquez-Aguilar J G,Granados-Contreras M,Ramirez-Agundis A,et al.Hybrid object detection vision-based applied on mobile robot navigation:IEEE International Conference on Mechatronics,Electronics and Automotive Engineering[C].Prague,Czech Republic:IEEE,2015:51-56.
[11] Li G,Lu G,Yan Y.Fire detection using stereoscopic imaging and image processing techniques:IEEE International Conference on Imaging Systems and Techniques[C].Santorini,Greece:IEEE,2014:28-32.
[12] Torabnezhad M,Aghagolzadeh A,Hadiseyedarabi H.Visible and IR image fusion algorithm for short range smoke detection:First RSI/ISM International Conference on Robotics and Mechatronics[C].Teran,Iran:IEEE,2013:38-42.
[13] Undug J,Arabiran M P,Frades J R,et al.Fire locator,detector and extinguisher robot with SMS capability:IEEE International Conference on Humanoid,Nanotechnology,Information Technology,Communication and Control,Environment and Management[C].Cebu,Philippines:IEEE,2015:1-5.
[14] Kim J H,Keller B,Lattimer B Y.Sensor fusion based seek-and-find fire algorithm for intelligent firefighting robot:IEEE/ASME International Conference on Advanced Intelligent Mechatronics[C].Wollongong,NSW,Australia:IEEE,2013:1482-1486.
[15] Luo R C,Su K L.Autonomous Fire-detection system using adaptive sensory fusion for intelligent security robot [J].IEEE/ASME Transactions on Mechatronics, 2007, 12(3):274-281.
[16] Roberto G F,Branco K C,Machado J M,et al.Local data fusion algorithm for fire detection through mobile robot:Test Workshop(LATW),2013 14th Latin American[C]. Cordoba,Argentina:IEEE,2013:1-6.
[17] Ugur Töreyin B,Enis Cetin A.Fire detection in infrared video using wavelet analysis[J].Optical Engineering,2007,46(6):1-9.
[18] Amon F,Ducharme A.Image frequency analysis for testing of fire service thermal imaging cameras[J].Fire Technology,2009,45(3):313-322.
[19] Toreyin B U,Dedeoglu Y,Cetin A E.Wavelet based real-time smoke detection in video:IEEE 13th European Signal Processing Conference[C].Antalya,Turkey:IEEE,2005:1-4.
[20] Ko B C,Cheong K H,Nam J Y.Early fire detection algorithm based on irregular patterns of flames and hierarchical bayesian networks[J].Fire Safety Journal,2010,45(4):262-270.
[21] Marbach G,Loepfe M,Brupbacher T.An image processing technique for fire detection in video images[J].Fire Safety Journal,2006,41(4):285-289.
[22] Chacon-Murguia M I,Perez-Vargas F J.Thermal video analysis for fire detection using shape regularity and intensity saturation features:Third Mexican Conference, MCPR 2011, June 29 - July 2[C].Cancun,Mexico:IEEE,2011:118-126.
[23] Rehman A U, Necsulescu D S, Sasiadek J. Robotic based fire detection in smart manufacturing facilities [J]. IFAC Papersonline, 2015, 48(3):1640-1645.
[24] Yuan F. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids [J]. Fire Safety Journal, 2011, 46(3):132-139.
[25] Gu C J, Tian D Y, Yang C, et al. Flame detection based on spatio-temporal covariance matrix: International Conference on Advanced Robotics and Mechatronics [C].Macau,China:IEEE,2016:112-116.
[26] Verstockt S, Hoecke S V, Tilley N, et al. FireCube: A multi-view localization framework for 3D fire analysis [J]. Fire Safety Journal, 2011, 46(5):262-275.
[27] Castro J L E, Martínez-García E A. Thermal image sensing model for robotic planning and search [J]. Sensors, 2016, 16(8): 1-27.
[28] Memon S F, Kalwar I H, Grout I, et al. Prototype for localization of multiple fire detecting mobile robots in a dynamic environment:2016 3rd International Conference on Computing for Sustainable Global Development(INDIACom)[C]. New Delhi:IEEE,2016:395-400.
[29] Sathyan A, Kumar M, Cohen K. Image processing and localization for detecting and tracking wild fires: Proceedings of the 2015 Dynamic Systems and Control Conference[C]. Columbus,USA:IEEE, 2015:1-9.
[30] Lamberti F,Santomo R, Sanna A. Intensity variation function and template matching-based pedestrian tracking in infrared imagery with occlusion detection and recovery [J]. Optical Engineering, 2015, 54(3): 033106-033106.
[31] Zhu J, Javed O, Liu J. Pedestrian detection in low-resolution imagery by learning multi-scale intrinsic motion structures(MIMS):CVPR, OH[C].Columbus,USA:IEEE,2014:1-8.
[32] Li J, Gong W, Li W, et al. Robust pedestrian detection in thermal infrared imagery using the wavelet transform [J]. Infrared Physics & Technology, 2010, 53(4):267-273.
[33] Halidou A, You X, Bogno B. Pedestrian detection based on multi-block local binary pattern and biologically inspired feature [J]. Computer & Information Science, 2014, 7(1):125-135.
[34] Wang L T, Chen D B, Chen H Y, et al. On pedestrian detection and tracking in infrared videos [J]. Pattern Recognition Letters, 2012, 33: 775-785.
[35] Zhao X, He Z, Zhang S. Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification [J]. Pattern Recognition, 2015, 48(6): 1947-1960.
[36] Su K L. Automatic fire detection system using adaptive fusion algorithm for fire fighting robot:IEEE International Conference on Systems, Man and Cybernetics. IEEE[C]. Taipei:IEEE,2006:966-971.
[37] Bae N J, Kwak K H, Saraswathi S, et al. A study of robot-based context-aware fire escape service model:Computational Science and Its Applications – ICCSA 2013[C]. Springer Berlin Heidelberg:IEEE, 2013:287-293.
[38] Bhoite A, Beke N, Nanduri S, et al. Advanced situational awareness and obstacle detection using a monocular camera: 2010 IEEE Western New York Image Processing Workshop[C]. New York,USA:IEEE,2010:30-33.
[39] Ulrich I, Nourbakhsh I R. Appearance-based obstacle detection with monocular color vision:The AAAI National Conference on Artificial Intelligence,July/August [C]. Austin, TX:IEEE,2000:1-6.
[40] Nejah T M. Application of optical flow sensors for dead reckoning, heading reference, obstacle detection, and obstacle avoidance [D]. Monterey:Naval Postgraduate School, 2015.
[41] Cao T, Xiang Z Y, Liu J L. Obstacle detection based on V-intercept in disparity space [J]. Journal of Zhejiang University, 2015, 49(3):409-414.



作者简介:谭勇(1981— ),男,四川仁寿人,副教授,博士,研究方向:图像处理与模式识别.
更新日期/Last Update: 2018-02-25