|本期目录/Table of Contents|

[1]杜保国.狭叶薰衣草体内硫醇和抗坏血酸的分配特征及其对短期干旱处理的响应[J].绵阳师范学院学报,2018,(08):12-18.[doi:10.16276/j.cnki.cn51-1670/g.2018.08.003]
 DU Baoguo,Abundance and Distribution of Thiols and Ascorbate in Lavandula angustifolia ' Hidcote Blue' Seedlings during Water Deprivation[J].Journal of Mianyang Normal University,2018,(08):12-18.[doi:10.16276/j.cnki.cn51-1670/g.2018.08.003]
点击复制

狭叶薰衣草体内硫醇和抗坏血酸的分配特征及其对短期干旱处理的响应(PDF)
分享到:

《绵阳师范学院学报》[ISSN:1672-612X/CN:51-1670/G]

卷:
期数:
2018年08期
页码:
12-18
栏目:
博士论坛
出版日期:
2018-08-07

文章信息/Info

Title:
Abundance and Distribution of Thiols and Ascorbate in Lavandula angustifolia ' Hidcote Blue' Seedlings during Water Deprivation
文章编号:
1672-612X(2018)08-0012-07
作者:
杜保国
绵阳师范学院生命科学与技术学院,四川绵阳 621006
Author(s):
DU Baoguo1 2
1.College of Life Science and Technology,Mianyang Teachers' College,Mianyang, Sichuang 621006; 2.Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg 79110, Freiburg, Germany
关键词:
狭叶薰衣草 谷胱甘肽 抗坏血酸 干旱 体内分配
Keywords:
Lavandula angustifolia ' Hidcote Blue' glutathione ascorbate drought internal distribution
分类号:
Q946; Q945.78
DOI:
10.16276/j.cnki.cn51-1670/g.2018.08.003
文献标志码:
A
摘要:
植物体内硫醇化合物和抗坏血酸的含量与抗逆性密切相关.本试验以狭叶薰衣草幼苗为材料,通过控制水分模拟短期干旱处理.测定了在不同控水天数时,植物叶、茎和根内的硫醇及抗坏血酸(AsA)含量.结果表明:谷胱甘肽(GSH)是主要的巯基化合物,且叶片含量最高,达2 153.9 nmol/g dw,其次为茎,平均含量为1 395.2 nmol/g dw,根系含量最低; 随着控水时间的延长,叶片中GSH含量降低至63%,并于23 d后略有回升; 叶片中半胱氨酸(Cys)和γ-谷氨酰半胱氨酸(γ-EC)含量也高于茎和根,干旱并未造成其含量的显著变化.AsA在不同器官的分配与GSH基本一致,叶片中的含量最高,平均为13.6 μmol/g dw,茎段次之,根系最低.薰衣草体内GSH 和AsA绝大部分以还原态存在,控水处理未导致氧化型GSH和AsA含量的显著增加.试验结果充分说明狭叶薰衣草具有较强的耐旱能力.
Abstract:
The levels of thiols and ascorbate are closely linked to plant resistance to abiotic stress. Seedlings of Lavandula angustifolia ' Hidcote Blue' were subjected to water deprivation as drought treatments, the contents of thiols and ascorbate(AsA)in leaf, stem and root tissues after different days of water deprivation(WD)were determined. Results showed that glutathione(GSH)was the most abundant thiol in the plants. The highest GSH content of 2 153.9 nmol/g dw was observed in leaves 2 d after WD, whereas the averaged GSH content in stems was 1 395.2 nmol/g dw, which were both significantly higher than the contents in roots. Foliar GSH decreased to 63% at 9 d after WD, but increased again at 23 d after WD. Leaves also contained higher contents of cysteine(Cys)and γ-glutamylcysteine(γ-EC)than stems and roots, and no clear effect of WD on Cys and γ-EC was observed. The partitioning profile of AsA was similar like GSH, leaves with the mean content of 13.6 μmol/g dw were the main pool of AsA compared to stems and roots. GSH and AsA were mostly stored as their reduced forms, longer WD did not cause enhanced contents of oxidized GSH and AsA. In conclusion, the L. angustifolia ' Hidcote Blue' sedlings were highly resistant to water shortage.

参考文献/References:

[1] ZANDALINAS S I,MITTLER R, BALFAGN D,et al.Plant adaptations to the combination of drought and high temperatures[J].Physiologia plantarum,2018,162(1):2-12.
[2] 秦大河,丁一汇,王绍武,等.中国西部生态环境变化与对策建议[J].地球科学进展,2002,17(3):314-319.
[3] 黄小燕,李耀辉,冯建英,等.中国西北地区降水量及极端干旱气候变化特征[J].生态学报,2015,35(5):1359-1370.
[4] 王玉洁,秦大河.气候变化及人类活动对西北干旱区水资源影响研究综述[J].2017,13(5):483-493.
[5] 田小霞,孟林,毛培春,等.低温条件下不同抗寒性薰衣草内源激素的变化[J].植物生理学报,2014,50(11):1669-1674.
[6] ZOLLINGER N,KJELGREN R,CERNY-KOENIG T,et al.Drought responses of six ornamental herbaceous perennials[J].Scientia horticulturae,2006,109(3):267-274.
[7] 柴春山,娟芦,蔡国军,等.肥水和打顶对薰衣草生长发育的影响[J].草业科学,2011,28(9):1681-1684.
[8] 柴春山,蔡国军,莫保儒,等.薰衣草在甘肃定西干旱区的栽培适应性[J].草业科学,2010,27(8):97-101.
[9] PANUCCIO M R,FAZIO A,PAPALIA T,et al.Antioxidant properties and flavonoid profile in leaves of Calabrian Lavandula multifida L.,an autochthon plant of Mediterranean Southern regions[J].Chemistry & biodiversity,2016,13(4):416-421.
[10] 陈淑燕,田小霞,毛培春,等.英国薰衣草和法国薰衣草抗旱性评价[J].草业科学,2013,30(4):583-599.
[11] PEÑUELAS J,LLORET F,MONTOYA R.Severe drought effects on Mediterranean woody flora in Spain[J].Forest Science,2001,47(2):214-218.
[12] ZHEN S,BURNETT S E.Effects of substrate volumetric water content on English lavender morphology and photosynthesis[J].Hort Science,2015,50(6):909-915.
[13] 陈淑燕.六种薰衣草抗旱生理特性及光合参数研究[D].兰州:甘肃农业大学,2013.
[14] 王昕,李淑茂,任雅琴,等.干旱胁迫对法国薰衣草种子萌发和幼苗生长的影响[J].山西农业科学,2016,44(8):1100-1102.
[15] 陈淑燕,毛培春,田小霞,等.4种薰衣草属植物抗旱性综合评价[J].干旱地区农业研究,2013,31(6):152-158.
[16] 孟林,陈淑燕,毛培春,等.3种薰衣草光合生理特性对干旱胁迫的响应[J].草地学报,2014,22(3):653-656.
[17] 闫慧芳,毛培胜,夏方山.植物抗氧化剂谷胱甘肽研究进展[J].草地学报,2013,21(3):428-434.
[18] 赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
[19] FOYER C H,NOCTOR G.Ascorbate and glutathione:the heart of the redox hub[J].Plant physiology,2011,155(1):2-18.
[20] REDDY A R,CHAITANYA K V,VIVEKANANDAN M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of plant physiology,2004,161(11):1189-1202.
[21] ZHANG J,KIRKHAM M B.Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants[J].Plant Science,1996,113(2):139-147.
[22] DU B,JANSEN K,KLEIBER A,et al.A coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress[J].Tree physiology,2016,36(2):148-163.
[23] HERSCHBACH C,SCHEERER U,RENNENBERG H.Redox states of glutathione and ascorbate in root tips of poplar(Populus tremula× P.alba)depend on phloem transport from the shoot to the roots[J].Journal of experimental botany,2009,61(4):1065-1074.
[24] SCHUPP R,RENNENBERG H.Diurnal changes in the glutathione content of spruce needles(Picea abies L.)[J].Plant Science,1988,57(2):113-117.
[25] SOFO A,TUZIO A C,DICHIO B,et al.Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids[J].Plant Science,2005,169(2):403-412.
[26] CHAVES M M,OLIVEIRA M M.Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture[J].Journal of experimental botany,2004,55(407):2365-2384.
[27] RAUSER W E,SCHUPP R,RENNENBERG H.Cysteine,γ-glutamylcysteine,and glutathione levels in maize seedlings distribution and translocation in normal and cadmium-exposed plants[J].Plant Physiology,1991,97(1):128-138.
[28] XIANG C,WERNER B L,E'LISE M C,et al.The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels[J].Plant Physiology,2001,126(2):564-574.
[29] GILL S S,TUTEJA N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant physiology and biochemistry,2010,48(12):909-930.
[30] AGARWAL S.Increased antioxidant activity in Cassia seedlings under UV-B radiation[J].Biologia plantarum,2007,51(1):157-160.
[31] CHAN K X,WIRTZ M,PHUA S Y,et al.Balancing metabolites in drought: the sulfur assimilation conundrum[J].Trends in plant science,2013,18(1):18-29.
[32] ZHANG J,KIRKHAM M B.Antioxidant responses to drought in sunflower and sorghum seedlings[J].New Phytologist,1996,132(3):361-373.
[33] 刘维君,李宗艳,杨壁嘉,等.5种地被植物抗旱生理及差异比较[J].西南师范大学学报(自然科学版),2017,42(7):18-23.
[34] PASTOR A,LPEZ-CARBONELL M,ALEGRE L.Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender(Lavandula stoechas L.)plants[J].Physiologia Plantarum,1999,105(2):272-279.
[35] MUNN-BOSCH S,SCHWARZ K,ALEGRE L.Water deficit in combination with high solar radiation leads to midday depression of α-tocopherol in field-grown lavender(Lavandula stoechas)plants[J].Functional Plant Biology,2001,28(4):315-321.
[36] NOGUS S,ALEGRE L.An increase in water deficit has no impact on the photosynthetic capacity of field-grown Mediterranean plants[J].Functional Plant Biology,2002,29(5):621-630.
[37] NOGUS S,MUNN-BOSCH S,CASADESÙS J,et al.Daily time course of whole-shoot gas exchange rates in two drought-exposed Mediterranean shrubs[J].Tree Physiology,2001,21(1):51-58.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-04-16
作者简介:杜保国(1978- ),男,河北沽源县人,副研究员,博士,研究方向:植物逆境生物学研究.
更新日期/Last Update: 2018-08-07